
HE MST OF YOUR

_ &
spe ae

quar ees

et oe
Share ay” gains : a

wat — * R : 4 ‘ a i
:

oS ee a -

es

:

SE Onan s
fate oe

saat RAR a

: _ : — . _

MODEL SeRACIOUR aN we

OBSTACLE COURSE We look at how an
‘intelligent’ robot may be programmed to
move freely around a room, avoiding
obstacles in its path

PERIPHERAL VISION A wide variety of
add-ons is available for every home
cou uter. We give you some valuable a

129

sees .
5 _.

promised last week, our series on
spreadsheets continues with a look at
Abacus for the Sinclair QL

"THE DEFECT EFFECT Deus Ex Machina

weekly glossary of computing terms

is a novel game that combines elements of
arcade-style games with an audio
soundtrack ——s showbusiness stars

COMPUTER SCIENCE

FIGUREIT OUT We COVE! the
facilities LoGo offers for working with —
numbers

HANDSHAKING TO HEADER A

NAME CALLING We develop a machine
code routine for the Commodore 64 and
BBC Micro to complete our search and
replace program

DESIGN SENSE Structure is important in
machine code, particularly with large
programs. We consider some general
guidelines

SINE WRITING Now that our D/A
converter is complete, we begin to develop
the software to produce sound signals

REFERENCE CARD We continue to list —_INSIDE
extracts from the Z80 programmers’ BACK
reference card COVER

Next Week ©
@ Computer-generated
poetry? In our LOGO course we
develop a poetry program to
demonstrate the word-
handling powers of the
language.

@ We discover how robots can
be programmed to perceive
objects by comparing what
they see with an internal
model. :

_ @ In our 6809 machine code
course we begin to develop a

debugger program.

1) Why was Stirling Mouse amazed?
2) What are tape streamers ?
3) What is a saw-tooth wave?

Editor Vike Wesley Art Director David Whelan, Technical Edrtor Brian Viorns Production Editor Gaerne
Cardwell Art Editor Claudia Zell; Chief Sub Editor Robert Pickering Designer Julian Dor Art Assistant |i
Dixon, Staff WriterSiephen Viaione SubEditerSieve Vann. Researcher Viclanic Davis, Consultant Editor Sieve
Colwill, Contributors Geot! Bains, Harvey Mellat, Mike Curtis, Steve Colwill, Chis Naylor Tony Hatingion, Jim
Lennox, Steve Malone, [ec Bal Software Consultants (iol Soliware City, Group Art Director Very
Neville, Managing Director Slephen England: Published by Orbis Publishing Ltd: Editonal Director Brian
innes, Project Development Pete: Brookesmith, Executive Editor Viaurice Geller, Production Controller Peter
Taylor-Medhurst. Circulation Director David Breed. Marketing Director Vichae! Joyce, Designed and produced
by Bunch Partworks Ltd: Editonal Office (4 Rathbone Place London WIP 1DE © APSIF Copenhagen 1984; © Orbis
Publishing Ltd 1984: Typeset by Universe: Reproduction by a Morgan Lid; Printed in Great Bnitain ” a
Press Ltd, Leicester

HOW 10 OBTAIN ISSUES AND BINDERS FOR THE HOME COMPUTER ADVANCED COURSE - Iooues Can De ODiained Dy
placing an order with your newsagent or direct from Our subscription department || you fave any dificully
Oblaining any back issues from your newsagent please wiite to Us Sialing tlie issue(s) fequired and enclosing a
cheque for the cover price of the issue(s) AUSTRALIA — clease wiite io. Gordon & Gotch (Aus) Lid, (14 Witham
Street, PO Box /6/G, Velbourme, Victoria 3001. MALTA, NEW ZEALAND & SOUTH AFRICA - Gack numbers are
available al cover price [rom your newsagent. In case 07 difficulty, write to the address given for binders -
UK/EIRE Price 80p/IRE|. Subscription. 6 montis £2392 | Year £4/.84 Binder please send 13.95 per
binder, or take advantage of our Special Offer in early issues. EUROPE Price 80p Subscripiion 6 months air
£3/ 96 Surace £3146 | year ai £75.92 Surface £6292 Binder £5.00 Aina £5.00 MALIA Obdiain
binders fom your newsagent or Miller (Malia) Lid, MA Vassalli treet, Valetta, Malia Frice. £3.95 MIDDLEEAST
Price 8Up. Subscription 6 months air £43.94 Surface £3140. | year air £87.68 Surlace £62.92 Binder.
£5.00. Airmail. £8.31. AMERIGAS/ASIA/AFRICA - Price. US/CANS 1 95/800 Subscription. 6 months air £51.74
Surface £31.46 | year air § 103 48 Surtace £62.92 Binder £5.00. Amal £9.44 SOUIH AFRICA (ice SA
R195 Obiain binders from any branch of Central News Agency or Intermag PU Box 9/394 Springield 2137.
SINGAPORE — Price Sing S450. Obiain Dinders from MPH Distributors 601 Sims Diive, 03-07- 2\, singapore
‘4438. AUSTRALASIA/FAR EAST - rice 80p Subscription 6 months air. £55.38 Surface £3146 | year alr
£110. 76 Surface £62.92 Binder £5.00 Airmail £9.84 AUSTRALIA @rice AusS195 Obtain binders irom First
Post Ply Lid 23 Chandos Street St Leonards NSW 2065 NEW ZEALAND - Price NZS? 25 Obtain binders from
your newsagent or Gordon & Gotch (NZ) Lid, PO Box 1595, Wellington.
ADDRESS FOR BINDERS AND BACK ISSUES — Orbis Publishing Limited, Urbis House, Bedtordbury, London woo
4Bl. lelephone 01-379 6/11. Cheques/postal orders should be made payable to Orbis PUDIShing Limited Binder
prices include postage and Packing and prices are in 0 Back iSSues are Sold al the cover price, and we do not
chalge Carriage in ine UK.
NOTE — Binders and back issues are oDiainable subject {0 availability of stocks. Whilst every allempl is mace 10
_keep the price of the issues and binders constant, tne publishers reserve te right to increase the stated prices al

__any time when circumstances dictate. Binders depicted in this publication are tuose produced for the UK and
Australian markets only. Binders and Issues (nay be subject to import culty and/or local taxes, which dre not
included in the above prices uniess stated.
ADDRESS FOR SUBSCRIPTIONS — Orbis Publishing Limited, Hurst Farm, Baydon Road, Lambourn Woodlands.
Newbury Berks RG16 /1W. lelephone 0488-72606 All cheaues/postal orders should be made payable 10 UrUIS
Publishing Limited, Postage and packaging is included in subscription rates, and prices are given ini sterling

COVER PHOTOGRAPHY BY MARCUS WILSON-SMITH

IAN McKINNELL

In this series we have shown how an
‘unintelligent? wheeled vehicle might be
made to move under the control of either a
human operator or a computer, and we have
looked at the ways in which a robot arm can
move ‘intelligently’. Now we consider what
needs to be done to design a robot that
moves in a truly ‘intelligent’ fashion.

First of all, we do not want to control the robot by
using a human operator. If the operator must
watch the robot and control its every move then in
many applications there would be no point at all.
in using a robot — the person might just as well
perform the task the robot carries out. This does
not, of course, apply in all situations. Robots used
in bomb disposal work are human-controlled,
because human expertise is still needed to guide
them correctly. |

There is also little point in controlling a robot via
a fixed sequence of instructions stored in a
computer. This would result in little more than an
automaton — a device that will slavishly follow the
built-in sequence regardless of circumstances.
Again, there are times when such a device is
useful; robot arms are often considered
‘intelligent’, even though they carry out a pre-
programmed set of actions.

However, our definition of an ‘intelligent’ robot
was one that would bring you an early-morning
cup of tea. This cannot be human-controlled, as its
function is to carry out its task before a human is
awake. If this tea-bringing device is programmed
with a fixed sequence of instructions, problems
will arise if you move your bed or leave a pile of
clothes on the floor.

So our definition of intelligent movement is the
ability of a robot to move around in its
environment without being controlled by a human
and without blindly following a fixed sequence of
instructions. It should be able to travel from one
point to another, avoiding any obstacle on the way.

There is a tradition in the field of artificial
intelligence of using games of one kind or another
to examine complex problems of this sort. Just as

_chess-playing programs have given considerable
insights into other branches of artificial
intelligence, so maze-running robots can help in
the definition of truly intelligent movement. In the
late 1970s, ‘micromouse’ contests began in the
USA, and in 1980 the first such competition was
held in Britain. The idea was very simple — a large
maze some three metres square was constructed,
and contestants had to design robot ‘mice’ that
could find their way unaided to the centre. The
maze consisted of small squares of equal size, the
sides of which were sometimes open to show a

Building Sight
lf their processors are
sufficiently sophisticated,
mobile robots can learn a

catalogue of archetypal objects
for use with shape-recognition
and pattern-matching
algorithms. The Beasty robotic
arm here is equipped with a
Snap camera, which produces a
digital picture, and the Snap
software, which includes an
object recognition module. Once
the object has been ‘seen’

from different viewpoints, the
arm has a reasonable chance of
being able to recognise it in any
position

THE HOME COMPUTER ADVANCED COURSE 721

KEVIN JONES

BRIAN MORRIS

APPLICATION :ObOJICS

Simple As ABC
oiple aigonthams do work in

maze solving. (his obol

advalices 110 enply Spaces |
Unt) itineeis a dead end — ai

ange io

exampie. [linen retreats (0 ine

las| (UNCON ILencounlered —

Square G ere — (naiking aliine

intervening Squares as useless
in tS enial ap. || inere are 0

untned routes 10m a junciion
ine O00 1etreals (0 (ne junction

Delore (al, and SO On, all tne

Way Dack (0 (Ne enirance |

necessaly — i) which case Tie

mazeis Dind OF insoubie

Squares F

Pues

PG

a pis Ba eer

oe Fae B

Sy eee ee

Ga ate ee UE eae

ees ee cc A laa

Solving The Maze
He ae le ee ae
HA ae 4g

LAR ee ee ee

ea

te eA

Ce UD

er PA

CU ee a

oe
2o0p
oo.
a eee

ee ay

ena z

7 ee EC

|. | . =.
a =,,—Cr—.—.UCUCUTU—OC KNVY.—Cs‘a‘cCawsiC*ztC

A9a9
7000
700)

Le ee ee ee ee oe ae

Fae Ps Ee &

SO Se ee A ee ee eae

Le a e

Pee pe ee ee,

Pe eee A ee LD

DL ee A eae ee

eee ee TEN ea

DESO 1 2g eee

PORE SL eee ee ee Me ee

FE ES a Re a A ae a ea A ee es Aa a a

Bee a ea ND *

EA ae ee ts eae a ee ce ae ee ee ae aa

a ee Reena hse te a

Leg ee Pee ee

Ce Rs i ee a)

TP OR ee

Te Ne ee

Pee CMR ye De ee Pe Be

ee PAD ees ee

PM TR Ee

Ee |

ea

Ey

aA

CREAN

Beige a)

Bay)

a
Boge

usta

Sey

athens

He

es Ga

ee eA

A

arent Ta

ew

a

ghar

a)

an

See aes

ee

a a a

aan

Hah aes

pr ae,

Beary

eaeean nae

722 THE HOME COMPUTER ADVANCED COURSE

FLEE PPA 3 AC 0 A Se Ae Be AC ea Ae ee i a ae

Ae PMTs x
BT Seg Ui Se Ae RE ae A a ie RR ie Ae i a Se ey

oF
Oe 1 eo poe eeae
1) 2 ee ee ee 2)
PRU GPL eke) vey cp)
Dee er ee eee
1 ee ee
Pelee
Pa PASE Oe EAC A ie i ea i a ie ie A nas i i i

Pee PRt Te mage x
Aas Trea. ae Ge a Ss ae Ue ae Gee cas eet cee eae ee ca ces See

PRIN] 06.6 oe coe!
Weal ee Cee Ls
Ca "
POP el 0 Glee eee eee
Peet bee ee Gr) ue
Pot ee ee

CR ope ee

Pe ee ae ee

Wie MCRL) Ce Nin Cia}

Pie US IN INL sey ee ed

GOB FOS Pit) WEN]

COM C ee eR) e O P

PR UND M2 (00-1 RO) eae
Oe Gy: COBO: GUSUBOEAG: PRINT)?
Re TURN :
BS Ee A ori ts ce Ua a a io i ie ch

ReMe POSITION THE CRSA »
BT a Ne A a RB i i ie A ie

PRINT LEP TERS RO) TAR (CO 1) st Re TL

ENTRANUE

possible route, and sometimes closed to denote a
wall. The mouse that reached the centre in the
shortest time won the contest.

At the first British Micromouse contest, there
were five entrants only. Some of these behaved in
an extremely erratic fashion — one could not even
travel in a straight line and even the best of the
mice became quite bewildered once it had turned
a couple of corners. In the same year, the
European Finals of the competition were held,
and mice began to arrive from Finland,
Switzerland and Germany. Eventually, a mouse
did succeed in negotiating the maze correctly; this
was Nick Smith’s ‘Stirling Mouse’, which was
equipped with simple mechanical sensors that ran
along the top of the maze walls and was powered
by a simple stepper motor. Since then, interest in
such competitions has grown, and in the 1984
Euromouse Contest in Madrid the fastest time to
the centre of the maze was 31.4 seconds. Some
contestants were still unable to reach the centre at
all, but most succeeded.

MAPPING THE MAZE
So how does a robot mouse negotiate a maze?
In general, the robot must have a precise method
of moving itself around so that it knows its exact
position at any time — this can be achieved by
mounting the robot on wheels and driving it with
stepper motors, often using some form of internal
position feedback, such as shaft encoders. The
robot also requires a set of sensors to detect the
presence or absence of walls so that it can

construct a ‘map’ of the maze. In Micromouse
contests, the robots are allowed a couple of
training runs, which they use to work out a plan of
the course. They then make the competition run,
during which they are timed in their attempts to
reach the centre. |

Although precise methods vary from one robot
to another, one answer is to have the robot fitted
with a simple tactile sensor at its front. Sitting at
the centre of each square of the maze in turn, it can
test to see if a wall is directly in front of it. It then
turns clockwise through 90°, tests again, and
repeats the sequence. Eventually it will ‘know’
where all the walls are in each square of the maze.
This information can be stored as a single four-bit
binary number — so 1111 in binary would
represent a square with walls on all four sides
(impossible in practice, as the robot could never
enter that particular square), and 0000 would
represent a square with no walls at all. 0111 would
then represent a square with three walls and one
opening — a cul de sac.

This information could be held in a two-
dimensional array — in Basic, DIM A(16,16) could be
used to represent a maze with 16 ‘cells’ in each
direction. The robot then has to work out a route
that will take it to A(8,8), if that is considered to be
the centre of the maze. Often the robot has a built-
in computer program that works out a tree
structure for each route through the maze. Many
of the branches of the tree will lead to dead ends or

KEVIN JONES

bring the robot back to a point it has already
visited; in these cases the branches are ‘pruned’
and disregarded. The program then searches along
the remaining branches to find the route with the
least number of squares. It then adopts that Pa as
its route to the centre.

This method can be adapted to provide a more
efficient strategy. The sensors on the robot are.
crucial to its success. For instance, simple
mechanical touch sensors require the robot to
actually bump into each wall to map its path;
proximity sensors can detect a wall without
actually touching it and a distance sensor can
detect the position of a wall at the end of a long
clear path in the maze. Obviously, equipping the
robot with four sensors instead of just one would
enable it to ‘look’ in all four directions at once and
would remove the need to make it turn around in.

each square.

AROUND THE HOUSE
So we can see that a robot can act ‘intelligently’
as it negotiates a maze. In many respects, the
problem of constructing a robot that can find its
way around your home is very similar. The robot
must use sensors to work out the positions of all
the objects in a room, and it must then plan a route
that will take it round any obstacles to its
destination. The additional problems involved in
this type of intelligent movement stem from the
fact that a room is much more complex in design
than a maze. The typical room is not neatly
divided into squares, nor do all its contents remain

in the same place. Your tea-making robot may
learn the position of various objects — but if you
move a chair, or if a cat sits on the floor, the robot
must then modify its chosen path.

This problem can only be solved by having the
robot make continual use of its sensors to update
its internal map. The problem of the cat requires
more thought because, as robots do not know
anything about cats (or about people, for that
matter), it is difficult for it to work out what to do
at its first feline encounter. (No doubt the cat will
have the same problem when it first meets a
robot.) The best solution is to fit the robot with a

“ movement sensor — which is a distance sensor that

responds to variable distance measurement and
can thus cope with moving objects. Once the |
moving object has been detected, the best thing
the robot can do is to stop moving altogether until
the object itself stops moving or goes away. This
may not sound very intelligent, and is certainly less
friendly than going up to the cat and stroking it,
but such an action is very similar to the reaction
shown by many animals, which ‘freeze’ when they
detect moving objects.

The whole subject of intelligent movement is
thus intrinsically linked to the use of sensors in
conjunction with a computer program. A robot
without sensors will not be able to move
intelligently, and the more sensors a robot is
equipped with, the better its knowledge of the
world will be. It is this knowledge of the world that
enables the the robot to exhibit signs of
intelligence.

A Room Of Gne’s Own
Finding a way around unknown
objects is never easy. Path A
shows the track of a simple
household robot trying to find
the electrical socket. Its only

object avoidance algorithm

(known as ‘wall-following’) is to
follow the edges of things while
its short-range sensors seek the »
object. This primitive method

can be very successful in simple
Surroundings, but is susceptible
to traps and pitfalls of the kind

shown here.

Path B shows the track of a
similar robot with a slightly

improved algorithm: when it has
to turn along the side of an
object it prefers to turn through

the smallest possible angle
since this will reduce the

amount of ‘back-tracking’ that it
does. This simple change
greatly reduces its vulnerability

to traps and allows its scanning
sensors to control its behaviour

THA more effectively

THE HOME COMPUTER ADVANCED COURSE 723

MODEL BEHAVIOUR

Our series of articles on | spreadsheet
modelling has so far concentrated on Psion’s
Vu-Calc, a simple cassette-based package
for the Spectrum and BBC Micro. Here we
tum our attention to Abacus — the
spreadsheet package, also designed by
ts au eee with the Sinclair bid

has centred on the four software goede
‘supplied with the machine: Quill (a word
processor), Archive (a database), Easel (a
graphics program) and Abacus (a spreadsheet).
These packages contain some elements of
integrated design (see page 502). Data may be
transferred between them; spreadsheet models,
for example, may be displayed as graphs or
incorporated into a document prepared using
Quill. The display screens are similar, and some
commands are common to all the packages: for
example, three of the QU’ five function keys give
identical results in all four applications (F1 is the
Help key, F2 controls the ‘prompts’ area at the top
of the screen and F3 calls up commands).
However, the programs must be loaded and run
separately.

There are two different ways of loading Abacus
(or indeed any of the QL packages). The first
involves putting the Abacus cartridge in
Microdrive 1 and then pressing F1 to select the
monitor option or F2 if a television is used as a
display. The OL packages include ‘boot’ routines,
and the program will thus load automatically.
Alternatively, if the screen is already selected,
enter lrun mdv1_boot (assuming Abacus is in drive
1), and the initial screen will appear.

The screen shows the top left-hand portion of
the spreadsheet matrix — Psion refers to this as a
‘srid’ in its documentation. Initially, columns A to
F and rows 1 to 15 are displayed, although Abacus
has a maximum grid size of 64 columns and 255
rows. (Compare this to the maximum Vu-Calc
grid size of 28 columns and 55 rows.) Above the
grid display is a collection of prompts, and below it
is a data entry line, together with information
showing the status of the current model. The
prompts can be removed (by pressing F2), but are
very useful for beginners as they explain the
choices available at any time. This is, in effect, a
‘menu’ area, indicating which function keys are
used to control various operations, and showing
how to move the cursor or go directly to a
particular celi, how to enter data or text, and how
to call up commands. It is not a true menu,
however — options cannot be selected by

724 THE HOME COMPUTER ADVANCED COURSE

positioning the cursor over the relevant choice, but
must be typed in by the user.

Using Abacus for basic tasks is very simple,
although for more advanced modelling some
commands and expressions will take some time to
get used to. The following example, again based
on a home budget, will illustrate Abacus at work.

First of all, we need a general heading. As with
Vu-Calc, text entries must be preceded by a —
double quotation mark. We will call our model
CASH FORECAST and, by pressing the
appropriate cursor key, we move to cell D1 and
simply type a double quote followed by the text.
Abacus, like most spreadsheets, allows text to
‘overflow’ a cell if the adjacent cell is empty, so it is
easy to enter even long titles anywhere on the grid.

CASH FORECAST
We can also underline the heading, thus improving
the appearance of our model. To do this, we must
move the cursor to the cell below our title (D2)
and enter rept (“=”,len(d1)). Here, rept is the
equivalent of Vu-Calc’s REPLICATE command, and
= tells the program which symbol to use (we are
using the ‘equals’ sign as a double underline). The
rest of the command — len(d1) — is a neat way of
telling Abacus to repeat the symbol for the length
of the text in cell D1.

Unlike Vu-Calc, which has a fixed column
width of nine characters, Abacus allows us to
select different widths for different applications.
Here we need to make column A wider, to allow
enough room to enter text of varying length, and
we also require the other columns to be made
narrower, so that the date for six months can be
displayed. To do this, we use the function key F3,
following this with G (to select the GRID command)
and W (for the WIDTH command). The input line
will indicate that the current width is 10. We want
to change the width of column A to 15, so we enter
15 in response to the prompt. The program will
now prompt for a range of cells to which the new
width will apply. Entering A and A as the two
parameters indicates that only column A is to be
set to this width. We must then go through the
same procedure again, this time selecting a width
of 6 and a range of B to G. There is now sufficient
room for six months’ figures to be displayed.
We must now enter labels for the ‘months’

columns. These may be done by simply typing the
relevant text in each cell, but Abacus has a special
facility for calling up month names. Move the
cursor to A3 and type row=month(col()-1). The
input line will now prompt for a range — enter B
and G in reply to the prompts, and the columns will
be labelled automatically. ‘January’ and

————$———————

x,

‘February’ contain too many letters to fit into our
adjusted columns, so these must be abbreviated.
This is done by overtyping, remembering the
quote marks to indicate text.

The next step is to enter headings for the various
rows, moving the cursor down a line after each
entry (unfortunately, Abacus does not provide this
as an automatic facility). Our model assumes that
the householder is a salesman whose income is
made up of both basic salary and commission. The
model allows income to be calculated on the basis
of commissions on forecast sales plus basic salary.
Actual sales achieved can be entered as the
months pass, and revised forecasts can then be
made for future months. Any negative values are
displayed in brackets on the finished grid. These
are the headings to be entered: Sales: forecast and
actual; Commission; Basic salary; Total income;
Expenses: Mortgage, Rates, Water rates,
Electricity, Gas, Telephone; Total expenses; Net
in or (out); Opening and Closing bank balance.

After column and row headings have been
entered, we can begin to fill our spreadsheet with

figures. First we'll enter the sales forecasts for the
six months displayed on the screen. These are
£10,000, £12,000, £13,000, £11,000, £12,000
and £15,000, but should be entered without the
pound sign or comma. Actual sales can’t be
entered yet, so well continue by calculating
commission on the forecast sales. This is
calculated as 20 per cent of sales over £10,000, so
the formula to be entered into cell B10 is
row=(sales-10000)*.2. Once again, the range
required is B to G; enter these letters in response to
the prompts and the commission will be calculated
and instantly displayed.

If the basic salary is £1,000 per month, this can
be entered at cell B11 as row=1000, again over the
range B to G. The formula for total income may
now be keyed in at B13. This is row=sum(col) witha
row range of 0 to 11 and column range B to G. This
completes the income calculation, but the
presentation of the model can be improved by
adding rules above and below the ‘total income’
row. To do this, move the cursor to B12 and enter
row=rept(“—” ,width()-2). Abacus will respond by
producing four dashes under each ‘basic salary’
figure. To carry out the same operation on row 14,
thus producing dashes above and below the ‘total

income’ row, the ECHO command is used. With the
cursor still at B9 the system will prompt for a range
over which to reproduce the underlining —
respond with B14:G14. (If you forgot to leave spare
rows when the headings were entered, these can be
inserted by using the GRID command.) To
complete the formatting, all the underlining
should be ‘justified right’ by using the J command
over the range B2 to G14 . This will ensure that all
the dashes will be aligned to the figures.

Expenses may now be entered, using the row
formula for standard monthly figures such as the
mortgage, or by simply entering each figure into
the relevant cells for occasional payments like
electricity and gas. Total expenses may then be
defined as the sum of all these figures, in the same
way that the total income was calculated.

Similarly, the net amount in or out can be
calculated as the total income minus the total
expenses. Unfortunately, Abacus appears to
ignore any part of acomman4d that follows a space,
SO we cannot simply enter row=total income-total
expenses. We must therefore rename the total

eenecrenzezeca

Jonuaryrebruartiarch fiprit fey Bh

income line as ‘income’ and enter row=income-total,
again for the range B to G. Each month’s net
inflow and outflow will now appear on screen.

The final step is to calculate the bank balances.
First enter the initial balance — an overdraft of
£200, perhaps. Enter this as -200. Now calculate
the closing balance, using the formula
row=net+opening with the cursor at B28, over the
now-familiar B to G range. This will give January’s
closing balance. Opening balances for other
months are calculated by entering at C27 the
formula row=B28. To make this work over all
columns, it is first necessary to change the order of
calculation from row to column by using the
DESIGN command. All opening and closing
balances will then be calculated, and will be
recalculated immediately if any figure is changed.
As it stands, our model will depict negative
balances as figures preceded by a minus sign. To
change this format so that brackets signify a
negative figure, we use the UNITS command and
reply to the prompt with B.

Our model is now complete. It should be saved
by selecting the SAVE command and an
appropriate file name chosen. The model may
then be printed out, or different figures entered.

THE HOME COMPUTER ADVANCED COURSE 725

Spreading The Word
Attractive screen design, good
features and a large prompt/
help facility makes Abacus a
pleasant and easy spreadsheet
in use. Here we show the ECHO
command in use copying one
row to another, the DESIGN

command options for
formatting the spreadsheet, and
the Month feature producing
the month names at the press of

a key. Also featured are the
default screen with the Prompts
menu at the top, and the blank
sheet showing the Command
menu

IAN McKINNELL

—a

Intelligent Copy
The replace routine has to move
large sections of the BASIC
program up and down in
memory when it inserts new
variable names of different
lengths. In this it encounters the

four possible conditions of the
source and destination
addresses. If it always copies

from the start of the source
block then, when the head of the
destination block overlaps the

tail of the source block, the
copying will overwrite some of
the source data. An ‘intelligent’
copy routine will detect this case
and avoid corruption by copying
this source block from the tail
first. A ‘dumb’ copy always

copies from the head of the
source block

LIZ DIXON

NAME CALLING

Having looked in more detail at the way a
BASIC program is stored, we can now extend
the variable search program to include a
facility to replace one variable name by
another. Here we look at the BBC Micro
and the Commodore 64 versions; in the
next instalment we will develop the same
program for the Spectrum.

Our variable replace program is a more
demanding utility than the simple search for
variable names that we developed on pages 664
and 700. For this reason we need to add a

726 THE HOME COMPUTER ADVANCED COURSE

machine code program. The BBC Micro’s 6502
CPU and the Commodore 64’s 6510 CPU have
the same Assembly language, so it is a good idea
to look at them together.

Our first task is to find a method of holding two
separate programs in the computer at the same
time. As we have already explained, we can do
this on the BBC Micro by altering the built-in
BASIC variables PAGE and HIMEM. On the
Commodore 64, we need a machine code
program to alter the various pointers in zero page
memory. The first part of the Assembly language
listing, beginning at the label SWITCH, will do this
for us.

The routine SWITCH will enable us to
accommodate two BASIC programs: one
beginning at address 800 hex (the usual place for
a BASIC program); and the other beginning at
address 9000 hex. SWITCH begins by looking at
the pointer TXTTAB to see which of the program
areas is current, and then changes the pointer
values to make the other program area current.

TXTTAB is changed to point to the start of the
new program area, then FRETOP and MEMSIZ must
point to the byte after the last byte of the new
program area, while FRESPC points to the end of
the new program area. The program then
searches down the chain of link address pointers
(see page 704) to find the end of the Basic
program, using VARTAB as the temporary pointer.
When it finds the two zero link address bytes that
mark the end of the program, it increments the
previous pointer twice and copies the result into
ARYTAB and STREND. In this way VARTAB, ARYTAB
and STREND all point to the byte immediately after
the BASIC program.

The main changes to the BAsic program that we
need to make are the extra subroutines at lines
30500 and 30600. The first of these finds the end
of the BASIC program, using the length of line
bytes in the BBC version and the next line
pointers in the Commodore 64 version.

The subroutine at line 30600 actually makes
the change in the variable names. When the old
and new variable names are the same length, the
new name can simply be written over the old.
Where the old and new variable names have
different lengths, the procedure is a little more
complicated. In this case, the program must either
make extra space, or close up any unneeded
space in the program it is changing, and make
corresponding changes to the variables it uses to
keep track of its position in the program being
altered. It must also change the length of line byte
in the BBC version and the next line pointers in
the Commodore 64 version.

DO 000000

=
||

f
o
o

0
0
0
0
0
0

|

size

ed th thousands of bytes to be mov

e code
Although
would be it

machin

2) :

ag
S

aS

$3
<¢5 R

B
y
A
s

=

|

®

3.8
C
y
*

B
a

a
—
a
O
8

gS:
6
,
7
 ©

A
e
.
 2

m
e
e

>
.

B
o
a
s
 *

S
8
6

0
2
0
5

8

=
i

©
&b

B
2
e

7)
S
e
s

UP to es

every time.
There are two machine code routin

make extra space; and DOWN to close up
unneeded space. Details of the block of program
to be moved are passed to the mac
through the memory locati

e code
LAST an d 2 ons CURR

DIFF. wes

owing memory
alised

address of bottom of block to be moved

one less than address of top of block
moved

P, the foll
ti ini

For the subroutine U

locations need to be

to be
CURR
LAST

S

number of bytes to be freed

and for DOWN they need to be

DIFF

alised as

address of top of block to be moved
one less than address of bottom of block

to be moved

ti ini

CURR
LAST

ed DIFF

he RUN the Assembly language program to put t

art at opposite

d the
it has been moved

avol

ble replace arla

to 1S S

in (or LOAD) and

Then LOAD the

es st

ections.
data being overwritten before

Ory.
in

te

number of bytes to be recl

Note that the two subroutin

moves in opposi

To use the BBC version of the v.

program, you first need to type

ends of the block to be moved and make the

program to be altered and type
machine code into mem

= PAGE P%

o
a
d

o
w

S
o
t
s

S
u
s
e

O
5
0

A
x
x
 &

bb
5

a
e

ba
S
h
a

o
e

A
n
a
k

S
be

PE
o
e

2

S
e

B
S
L

o
&

S
E
S
E

o
8
—

s
o

S
o

S
a
e
a
e

S
D

O
o

A
w

O

=

42's
o's

BS oS 2
= 6

-
0
-
6

E
s

e
s
o

= PAGE — 1 HIMEM

O
o
O
g
e
s

3
S

v
O

S
e
g
o
e

8
3
8
2
8

S
o
n

3

a
s
o

&

=

2
°
 ©

2
a

2
0
5

Dn
a

5

E
F

B
o

e
o

2
5

e
r
e
s

m
e
s
 0

Y
O
Y

m
o
s

B
O
E

0
8

S
u

L
e
s

3

o
f

g
e
c
e

8
R
O
O
R
S

2
8
6
5

U
'
d

u
n

S
G

2g Fox
s
e
e
6
°

D5
g
h
a
 ks

b
b
 5
b
b
 5
 O
R
Z
E

B
A
S
S
A
S

se!

d
to

ing the alternate

you will need
, 36865 an

. :

ivalent to NEW is equ
into addresses 36864

S

directly as machine code
POKE zeros
36866.
program area

code

i

fh

SS2E5

Pre

oe

p=

OW.

©

Ve)

©

T

<°

a

&

See,

>

mee

o

SOosss 72

hE

SegsL Boda

S

25524 e

)

Nee

Baggs
>

Bb

eS

See

er

Saved

oer2s

Me

6's

.

Or

ee}

B=

o

=

§

se

xs

sfag 5D

ESE

gba.

§
BEd

2
Sea. &.
areca

the in

am to be altered
d the variable

chine code

alternate program
lacement program

into the
ble rep

you have the ma
computer, you can LOAD the progr

aria then RUN the v. ?

Once

into the normal program area an
replacement program
area

THE HOME COMPUTER ADVANCED COURSE 727

Hard To Say . arate
‘Winchester’ has become the
generic name for all hard disk

drives, though properly it refers.
only to those that employ

IBM’s Winchester
_ technology. Computing
legend has it that

_ this name-
derives from
the prototype
‘Machine's —
having been
called a 30/30,
which is the
Calibre and load
designation of the
famous Winchester rifle.
The more prosaic explanation
is that the technology was
developed at IBM’s plant in
Winchester, England

HANDSHAKING |
In computing, the precise timing of operations is
essential. Even such
microprocessors as the Motorola 6502 run at a
clock rate of 1 Mhz, which means that a primitive
processor operation such as_ fetching an
instruction from RAM takes about one
microsecond. Remote devices such as printers and
disk drives, however, operate at very much slower
speeds — a dot matrix printer might take 3,000
microseconds to print one character. Transferring
data between the computer and its peripherals,
therefore, must be governed by strict protocol:
handshaking is an interlocking protocol by which
one device signals its readiness to receive or
transmit a block of data, but does nothing until a
corresponding ‘ready’ signal is sent by the other
device. If transmissions are not controlled in some
such way, data will be corrupted by the faster
device reading the same data twice, or by the
slower device reading only the start of i incoming
data.

Handshaking can be managed entirely
| software, but is reasonably easy to ‘hard-wire’ into
the device interfaces. The Motorola 6802
Peripheral Interface Adaptor (PIA), for example,
communicates through its data register: when this
is written to, a flag is automatically set in the PIA’s
status register; reading the register then resets the
flag. Handshaking with this facility is reasonably
Straightforward: the CPU sends a character to the
PIA, and continues with whatever program
processes are current until it finds that the PIA’s
read/write flag has flipped, indicating that the
external device has read the data register. This
means that the CPU can send the next character to
the PIA. The state of this flag, then, shows the
PIA’s state of readiness, and could be wired to one
of the chip’s pins to Serve as the veel Not
Ready’ signal line.

HARD DISK

728 THE HOME COMPUTER ADVANCED COURSE

old-fashioned —

An increasingly common alternative to the floppy
disk drive with its interchangeable slow-speed/
low capacity disk is the high-speed/high capacity
hard disk. In this device the disk spins constantly at
high speed in a sealed atmosphere — sometimes a
vacuum, sometimes an inert gas such as nitrogen
— and is never removed from the drive. The

storage capacity of the hard disk is therefore
considerably higher than that of a floppy disk,
where the need for robustness, cheapness and
convenience affects the engineering design and
precision. Hard disk drives with between 10 and
30 Mbyte capacities, costing about the same as a
modest business micro, are now freely available.

Managing the hard disk’s contents requires
some care — particularly the duplicating of system
software and data files. Many owners ‘back-up’
the contents of the hard disk onto floppy disks
every day, so that ifa crash occurs, the floppies can
be used to reconstitute the system. Copying
several Megabytes can take hours and many disks,
however, so high-speed tape recorders (called
‘tape streamers’) are often used instead of floppy
disks. Even so, new software must be loaded onto
the hard disk somehow — from a floppy disk drive
or via a data link to another system. Either method
increases the not inconsiderable cost of the device.

HASHING
When data domains are large but ome space is
limited, some method of ‘Mapping the domain into
the file record structure is necessary; hashing (see
page 273) is a common method that combines
efficient use of file space with reasonably high
record access speeds. Let’s assume that records ina
file are to be arranged alphabetically according to
the word in the first field of the record, and
suppose that the field is 10 characters long: it

_ would be very convenient if the ASCII characters
of the word could be used to give the position in
the file of the record — ‘A’ should go in Record 1,
‘B’ in Record 2, and so on. The number of possible
combinations of 10 ASCII codes in the range 65 to
90 is enormous, however, and no file could
accommodate them. The solution is to ‘hash’ the
name’s codes so as to produce a reasonably sized
number. In this case, several different names will
probably produce the same hash; when a record is
to be stored but its hashed location is found to be
occupied, the hash itself is rehashed to produce
another possible location for the record.

HEADER —
Data or programs are stored on tape or disk in files
of various different formats (see page 124). The
first information in the file, therefore, is written
there by the system at file creation time, and
consists of the file’s title, type and length. This is
the file header. If you listen to a data cassette on an
audio cassette player you will hear a high-pitched
tone first (the synchronisation reference tone),
followed by a short burst of data followed again by
the reference tone; this first section of data is the
file header.

HARDWARE/PERIPHERAL OVERVIEW

PERIPHERAL OVERVIEW/HARDWARE (Cy

SINE WRITING

IAN McKINNELL

732 THE HOME COMPUTER

In the last section of Workshop we built a
digital-to-analogue converter to expand our
user port system. We can now begin to

design software to produce sound signals
from this device. In this instalment we look
at the production of different waveforms
and discover how to determine the duration
of a note.

Once these steps have been followed, we can test

the system using a short Basic program. In essence,

sound is generated electrically by providing an

oscillating voltage to a speaker. We can generate a

crude oscillating voltage output from our D/A

converter by changing the contents of the user port

data register from 0 to 255 and back in rapid

succession. Type in the following program and

RUN it. Turn the D/A potentiometer clockwise

until sound can be heard.

Si i eee

DDR=346579 2 DATE
DDR, 255

KEKE

DATRES

ADVANCED COURSE

Notice that the Basic program has a repeating
structure, all crunched down onto a single line to
produce maximum speed. There is a delay loop
inserted between the data register being set to 255
and it being set io 0. The value N in line 35 sets the
length of this delay. Try altering the value of N and
re-running the program. You will notice that the
pitch of the tone heard goes down as the value of N
increases.

The highest pitch obtainable from this BAsIc
program will occur when the delay loop is
removed altogether. Even a loop executed once
has an audible effect on the pitch of the note heard.

If you have experimented with different
values of N in the BASIC program given, you will
have noticed that changing the value of N by 1 hasa
significant effect on the pitch of the note. BASIC is
just not fast enough to allow us to control the rate
of oscillation accurately. Instead we must use
machine code.

In the next instalment of Workshop we shall
look at the difficult problem of controlling pitch
and volume from machine code. Here we
concentrate on devising a program to produce
different waveforms. The waveform produced by
the BASIC program used earlier was a Square wave.
It is, however, possible to produce other
waveforms, which alter the ‘quality’ of the tone
heard. We can digitally synthesise sine and saw-
tooth waves by taking a number of samples of the
waveform and putting them in a look-up table.
The machine code program required to place
these samples one after another in the data register
is in essence very simple. Our illustration shows
these three waveforms, together with
accompanying look-up tables for sine and saw-
tooth waves. If the waveform cycle is divided into
steps, and these steps sampled, then the program
loop that sends these samples out through the user

port is shown left.
In producing sound, timing is crucial. Next to

each instruction is the number of machine cycles
required to execute that instruction. From this

formula we can calculate the total number of
machine cycles it takes to produce one complete

waveform cycle: number of machine cycles =
2+(44+-4+242+3)x steps —1 = 1 + 15 X steps.

If the wave is split into 80 samples then the
number of machine cycles required to produce
one waveform cycle is 1,201. :

As each machine cycle in 6502 code takes
about a millionth of a second, the total number of

waveform cycles that can be produced in one
second (i.e. the frequency of the note) is given by
this calculation: frequency = 1,000,000/1201 =

832 Hz. As middle C is 512 Hz, the note produced

SELIG LEI OOS TS TIS IE RTI DB SSR ETT

ee

SASSER TATE USNS Tels yi

LIZ DIXON

“THE SAW-TOOTH WAVE

AMPLITUDE

-_THESQUARE W WAVE

Form Filling

The sine wave and the saw-tooth
waveforms are Created by first
deciding how many sample
steps are to constitute one cycle
of the wave. These samples of
the wave’s amplitude are then

calculated and stored in a look-
up table. The values in this table

can then be copied in sequence
to the user-port data register

_ and thus to the digital-to-
analogue converter where they
become voltage levels. The
advantage of the look-up table i is -
that it allows the time-

- consuming Calculations to be
done in advance; actually

generating the waveform

therefore takes little time, and

_ this makes a frequency range of

_ several octaves possible.

Without the look-up table the

range would be restricted to two
octaves.

The square wave can be
generated by a BASIC program.
because the processisso
simple. BASIC’s slowness, -
however, restricts the frequency
range considerably

~ LOOK: uP P TABLE

- GENERATING PROGRAM ,

sheild be aitchod just a a notes ager a than
middle C.

It can be seen that the number of sample steps in
which we choose to divide our waveform has a
direct effect on the frequency of the final note.
Doubling the number of sample steps would halve
the final note frequency. Obviously, the more
samples we make of the note the nearer we are
likely to get to the tone quality we are synthesising,
but this must always be weighed against the final
maximum frequency that can be achieved for a
given number of steps.

One waveform cycle is unlikely to be long
enough to be audible, so we must also include
code to repeat the waveform-generating section of
code a set number of times. The number of repeats
can be determined by setting a counter value and
decrementing it to zero. To give a large range of
counter values, a 16-bit number stored in two
adjacent locations has been used. In addition to
this code, interrupts are disabled at the start of the
program by SE1 and re-enabled by CL1 at the end.
If interrupts were to occur during execution, then
this would make the timing of the program
inaccurate. However, we can disable some
interrupts only; non-maskable interrupts, if they
occur during program execution, can still be the

cause of some timing errors. ©

The waveform data must be set up in : memory ‘ae : |
asa look-up table, witheach waveformtypetaking —_—
80 consecutive locations. In the Commodore
version the sine wave look-up table is located in

memory starting at $C000; the saw-tooth tableisat
$C050 and the square wave table starts at SCOAO.
The machine code program is.designed to default _
to load data from the sine wave table using
indexed addressing, but we can switch to another
table by modifying the program directly with a
POKE from sasic. The LDA part of LDA SINE,X is in
location $C103. The start address of the table of |
data to be loaded has its LO—byte in location
$C104 and its HI-byte in location $C105. To modify
the start address of the data to be loaded all we
have to do is to change the number held in $C104.
Normally, for a sine wave, this location will hold 0;
if we wish to change to a saw-tooth wave then all
we need to do is change the contents of $C 104 to 80.
Changing the contents of this location to 160 will
change the waveform to a square wave. |

The BBC version is also designed so that the
look-up tables start at the beginning of a new page
in memory. Because the tables start at a new page, -
the HI-byte of each of the table start addresses is
the same, and we need modify the LO-byte only.
On a normally configured BBC Model B in mode
7, HIMEM is &7C00. By lowering the top of memory
by three pages we allocate more than enough
space for the look-up tables and machine code
program.

BEE EEE EEE EEE EET

A a ate ee oe a ea

ie ia ++

;++ CBM 64 SOUND ++
pt+ GENERATOR ++
5+ te

5 bE EE EEE EEE EEE EET

AREER EEE EAE EEA EET

PORT =. SGa77. ;DATA REGISTER GDDRESS
STEFS = 30 ;NO. OF STEPS IN WAVE
+= $COO8

+++ SET UP DATA TABLEGREA. #+++
SINE ¥=K4+STERS

SAW K=K4+STEPS
SGUARE #=*+STEFS
NUMBER #=*+2

COUNT . #=#42

p++++ MGIN PROGRAM ++++ |

eo} ES ty Yat
AD Fa ce LDG NUMBER. 15 . ee alee 3
SBD F2 ce SE GUN sSET COUNT VALUE 9 |
AD Fi CoO - LDA NUMBER+1 SrA a has
SD FR-co ' STH COUNT+1

LOOF2
AZ ae LDX ##0@

AL OOF .
BD Ba CA LDA SINE,X :GET DATS
BD @i DD STA FORT :FUSH TO USER FORT

ES TNX
E@ 5@ CFEX #STERS <
D@ FS BNE LOOF? SEND GF ONE CYCLE

s4444+ DECREMENT COLINT +444
AD F2 Co LDA COUNT
38 - SEC
EF @1 SBC #481.
8D F2 Ce STA COUNT
AD FS co LDA COUNT+1

7 oe SHC #80
8D FS ca STA COUNT+1 SG Ne
De Ea BNE LOOF? 2IF HIBYTE?2 ~
Ao a2 LDA ##00 eae
CD F2 Coe CMP. COUNT
D@ D9 é BNE LOOFZ. 3IF LOBYTE:@
58 2 ip bes
58 RTS

THE HOME COMPUTER ADVANCED COURSE 733.

4

The machine code can be entered into your
machine by typing in the source listing provided
and assembling it to create a hex file that can be
loaded whenever required. The look-up tables
can be generated by running the following

99% GEM *2** CBM SOUND CALLING FROGRAM *#2##*

oe ad er

= Gin DH=G:REM FOR CASSETTE DM=1

92@ IFG4=@ THENG=1:LOG6D"SSOUND.HEX",Di',1

ToS 3:

i@@@ REM **#* SET UF DATA VALUES #*x#®

1485 5=8@ :REM RUMBER OF STEPS

1@@7 TE=12*4094 : REM START OF DATA AREA

1i@@& :

1@i@ FEM #*¥SINE WAVE EF

ive@ FOR I=@ TO 5-1

LARA Y=H=1SFS*SING XD +1 2S

1940 FORE TetI,y¥

1@45 X=E+2/5

1@S@ NEXT f s

i94@ : 4

1@45 REM **#* SAW WAVE #EHE

1@7@ Y=255:TR=TH+S

i@sAa FOR [=@ TO S-1

1096 FORE TRtI,7

11@@ Y=Y¥-2S5/S

Lita NEAT I

M1285:

11235 FEM *®*** SGUARE WAVE ###*®

4150 Y=255: TR=THt+S ;

114@ FOR [=@ TQ S/e-1

LiSO PORE TRt+L,¥

114@ NEXT I

1165 Y=@

117@ FOR I=s8/2 TQ S-i1

118@ FORE TRtI,y¥

1190 NEXT I

LESS

[AGO REM **** DISPLAY DATA TABLES ###*

S005 TH=12*4a96

SiG FORI=TH TQ TR+i*Ss—-]

2@2@ FRINTI,I-TB ,PEEE (YT)

2@3@ NEXT

-After running this program, type NEW and then
type this sample program that demonstrates how
to use the machine code, giving the SYS and POKE
addresses required to interact with the machine

code from sasic. This program asks the user to
enter the wave type required and then produces a
tone each time a key is pressed.

1@ BEM *#*# CBM 44 SOUND #kE®

oA REM «##** SAMPLE FROGRAM Hx#*

as

4% DDR=54579:F0KE DDR,255: REM ALL QUTFUT

65 CL=49292 :REM COUNTER LOBYTE LOCATION

&? Th=49412 :REM TYFE LOBYTE LOCATION

7@ SQUMD=49294: REM FROGRAMN START ADDRESS

75 FEM *#* SET COUNTER VALUE ®*

GQ NUM=8@s NHI=INT ONUM/ 256) s NLO=NUA-2562NH I

Q2 FPOKE CL,NLO:FORE CL+1,NHI

& FPRINTCHRS (147): REM

86 INFUT"WAVE TYFE (0
87 FOKE TL,WT*s
88 PRINT: PRINT"PRESS
9Q GETA#: IFA#="" THEN?
1949 SYS SGUND: REM CAL

4 11@ IF At="X" THEN &S

124 GOTG 7a

CLEAR SCREEN

SINE (1)SAW (2) 5QUARE"s WT

ANY KEY (RUN/STOF TO END)"

@ :REM WAIT FOR FEY

L. MACHINE CODE

If you do not have an assembler or do not
understand Assembly language then you can still
use the machine code program by typing in this
BAsic loader and running it. In this case, you can
omit line 920 from the program that sets up the
look-up table.

14 REM ***#* BASTC LOS

2A FEM #RE HAC

SQ FOR T=49294 TO 494

40 READ A: FORE 1,4

a@ CC=CC+&

60 HET I

70 READ CS:1F ClesCs

10G

114

120

120

144

pan 4)

144

17a

DATAZ42,192,206,2

734 THE HOME COMPUTER ADVANCED COURSE

DEF FOR CEM SOUND ####
HIME CODE KREBE

4S

THEN PRIHT"CHECESUM ERROR": END

DATAL ZO, 17%, 240,192,141 ,242,192
DATAL72%, 241,192,141,245,192,162,0
DATAIS9,@,192,141,1, 221,232, 224,90
DATG208 , 245,175,242,192,56,2335,1
DATG141, 242,192,173, 243,192,222,8
DATA1I41 , 243,192, 208,224,167,0,205

17,88,96
DGATA97115: REM*#CHECESUM*

FOR THE BBC | eo
As the BBC has its own built-in assembler, the
process of combining Basic with machine code is
substantially easier than on the Commodore 64.

1198
1198
1200
1220
123a
1240
1250
1268
12778
128a
1290
13519
1320
1230
124@
1350
156
1270
128a
1=90
1428@
1418
1428
1438
144@
1450
1455
1464

148@

=aae

2028

2825

2828

[04a

2850

=46@

=07@

2a98

=100

=11@

212a
2128

2=14@

2148

2g.

2180

2170

228

2228
bah Ei led
pret are)

22409

SEaa

2278

2288

2298

25ae

2218

PaaG

S800

28208

2030

2048

S50

S050

2a7@

2088

ZATA

. 2108

211a

21208

ies

S124

S144

S150

2140

REM *#** BEC SOUND FRUGRAM #*®**

MODE 7
HIMEM=HIMEM-£@2@1

MCZ=HIMEM+1

DDR=2FEG2: 7 DDR=255:REM ALL GUTFUT

por t=£FE4@: REM USER PORT CATA REG

steps=6@ :REM NO. GF STEPS IN & WAVE

table start=MC%

FPROCset up tables

FROCmachine code

FROCsample program

END i

DEF FROCmachine code

FOR apt#=1 TO 3 STEF 3

PH=MCA
sine=F%: PX=P4t+steps

saw=F75 FA=P4t+steps

@ square=P“4:F%=FPet+steps

number=F:FPA=F4+2

count=F4%: FPR=PA+2

L

QFT ant’
.**#* MGIN FROGRAM STARTS HERE

.50und

HEE

SEI

LDA number

STA count

LDA numbert+i

STA countt+l

.laape

LDX #286

-loopl

g LDA sine,X

STA port
INX

CFX #steps

BNE ioopti

\##e* DECREMENT COUNT ###*

Ni

LDA count

SEC

SBC #241

STA count

LDA cauntt+1

SEC #2.0@8

STA count+t+i

BNE loape

LDA #208

CMF count

BNE loops

(ia et

ETS

q

NEXT opt

ENDFROC

DEF FROCset_up tables

REM *#*** SINE WAVE ####

x=6

FOR I=@ TQ steps-i

yHl27eSIN(x) +127

?i(table_startt+Ii=y

H=xn+24F1T/steps

NEXT I ee

REM **** SG WAVE ##e#

y=255: table start=tabie starttsteps

FOR [=@ TQ steps-i

?itable_start+tl)=y
y=y-205/steps ©

NEXT I

REM **#* SGUARE WAVE *##*

y=255: table start=table_startt+steps

FOR [=@ TQ steps/2-i

?P(table startt+I)=y

NEXT I

y=@
FOR T=steps/2 TO steps-1

Pitable startt+I)=y

NEXT I
REM **** DISPLAY DATA TABLES #***

table start=MC%
FOR I=table_ start TO table start+3*steps-—1

FRINT “1I,™*(I-table_start),? I

NEXT I

ENDFROC
DEF FROCsample_program

counter=MC%+3*steps: REM COUNTER LOBYTE LOCATION

type=loopi+i: REM TYFE LOBYTE LOCATION

caunt value=8A

count Hi=count value DIV 256é

count lo=count value MOD 256

Pcaunter=count_ loa

caunter ?l=count_ hi

CES
INFUT"WAVE TYPE (@) SINE (1) SAW (2) SQUARE" pwave

Tilype-wavertsteps

REPEAT
FRINT“FRESS QNY EEY (xX TO EXIT)"

AL=-GETS

CALL sound

UNTIL Aft="xk"

BOTS sac

ee a a eminem

Ny ea eR

ease

n this instalment of our LOGO course, Ww

look at the facilities the language offers for
working with numbers. Loco would
probably not be the first choice of language
for applications that require a lot of
calculation, but it does offer an impressive
array of numerical primitives.

Almost all Loco implementations support both

integer and real (decimal) arithmetic, using the
infix operators + - * / . These operators are called
‘infix’ because they are written between the
numbers they work on —for example, 3+4.
Some Locos also include ‘prefix’ arithmetic, in
which our example would be written as SUM 3 4.

One advantage of this notation is that it is

consistent with the way in which other Loco

operations and commands are written.
MIT Loco supports infix arithmetic only, but it

is simple to program prefix forms if they are
required. Define SUM and PRODUCT and try them:

TO SUM :A:B
OUTPUT :A+ :B

END

TO PRODUCT :A:B -
OUTPUT :A * :B

END
The ‘precedence’ of operations (the order in which
they are carried out) follows the usual

mathematical rules. Anything within brackets is

done first, followed by multiplications and

divisions, and finally additions and subtractions:

PRINT (3 + 4) *5
PRINT3+4*5

Now try the prefix forms:

PRINT PRODUCT 5 SUM 3 4
PRINT SUM 3 PRODUCT 4 5

This demonstrates another advantage of the prefix
forms — there is no need for rules of precedence

and the line is evaluated in the same way as any

other line of LoGo commands. :
The usual division operation (/) gives the result

as a real number. Two other operations, QUOTIENT

and REMAINDER, are often useful for working with

integers.

QUOTIENT 47 5 is 9
REMAINDER 47 95 is 2

A standard method for converting a number in |

base 10 to binary is to keep dividing the number by

two until the result is zero. The binary number is

found by writing the remainders found at each

FIGURE IT OUT
stage in reverse order. For example, to convert 12
to binary:

12/2 = 6; remainder = 0

6/2 = 3; remainder = 0

3/2 = 1; remainder = 1

1/2 = 0: remainder = 1

So, reading the remainders upwards, we find that
decimal 12 is 1100 in binary.

Using QUOTIENT and REMAINDER we can
implement this technique easily in Loco. By
putting the print statement after the recursive call
we get the remainders printed in the correct
(reverse) order. 7

TOBIN :X
IF :X = 0 THEN STOP
BIN QUOTIENT :X 2
PRINT1 REMAINDER :X 2

END

Two operations exist for rounding numbers —
INTEGER and ROUND. INTEGER outputs the whole
number part of a number, simply ignoring any
figure after the decimal point, and ROUND rounds a
number up or down to the nearest whole number.

The following procedures calculate the
compound interest on an investment at a given
rate of interest. In PRETTY.PRINT, INTEGER is used to
get the pounds, and ROUND is used to round the
pennies to the nearest whole number.

TO COMPOUND :PRINCIPAL :RATE :YEARS
IF :YEARS = 0 THEN PRETTY.PRINT
‘PRINCIPAL STOP
COMPOUND :PRINCIPAL * (1+ :RATE/ 100)

“RATE :YEARS — 1 |
END

TO PRETTY.PRINT : MONEY
MAKE “POUNDS INTEGER :MONEY
MAKE “PENCE ROUND (: MONEY —

:POUNDS) * 100 :
(PRINT :POUNDS “POUNDS :PENCE

“PENCE)
END.*

TESTING TIME
We have already used =, <, and > as logical tests

in anumber of procedures. The logical operations
ALLOF, ANYOF and NOT can be used to combine

other tests. ALLOF is true if both its inputs are true,
ANYOF is true if either of its inputs is true, and NOT is
true if its input is false. So we get:

IF ANYOF :X > 0:X=0 THEN PRINT “POSITIVE
IF NOT :X <0 THEN PRINT “POSITIVE —
IF ALLOF :X > 0:X < 100 THEN PRINT

[BETWEEN 0 AND 100]

THE HOME COMPUTER ADVANCED COURSE 735

LISSAJOUS FIGURES

ee

One Step Over
The Line
The Drunkard’s Walk theorem

states that after N steps in
completely random directions
the probability is better than
0.5 that the drunkard’s
distance from the starting
place will be less than SQR(N)
steps. This is a statistical

prediction based on a large

number of steps, LOGO lets you
test it for yourself:

TO DRUNKWALK :STEPNO

‘STEP
CS REPEAT :STEPNO [RT

(RANDOM 361) FD.
STEP] :

END

DRUNKARD’S WALK

STEVE MALONE

ct ERE cst serra
ee :
HEHE enn ele eet i
EEE Be aE ti

: : . : 2) a : : ne a

____sé=iouimgdumwdwléititsw
i ditt

fete fh

Hn _. :

The operation NUMBER? outputs TRUE if the input
is a number, otherwise FALSE is returned. We use
this in the procedure PRIME?, which outputs TRUE
if its input is a prime, and FALSE otherwise. It
begins by checking that the input is indeed a
number, and that it is greater than two. PRIME.TEST
then checks to see if any integer between the
square root of the number and two will divide into
it exactly, leaving no remainder.

TO PRIME? :NO
IF NOT NUMBER? :NO THEN PRINT [NOTA

NUMBER DUMMY] STOP
IF :NO < 2 THEN OUTPUT “FALSE
OUTPUT PRIME.TEST :NO INTEGER SQRT :NO

END |

TO PRIME.TEST :NO :FACT
IF FACT = 1 THEN OUTPUT “TRUE
IF (REMAINDER :NO :FACT) = 0 THEN OUTPUT

“FALSE
OUTPUT PRIME.TEST :NO :FACT — 1

END

RANDOM NUMBERS
RANDOM n outputs a random integer between 0
and n-1. The procedure DRUNK makes the turtle
stagger across the screen, turning a random angle
at each step. The input A gives the maximum size
of the turn that can be made at any time. If you run
this procedure you will find that the turtle turns in
vague circles, moving to the left or to the right
depending on the value assigned to A.

TO DRUNK :A
FORWARD 1
RIGHT (— :A/2 + RANDOM :A)
DRUNK:A

END

or

736 THE HOME COMPUTER ADVANCED COURSE

a a : _. a He _

Pi COMES TO MONTE CARLO

The so-called ‘Monte Carlo method’ is a
technique for solving mathematical problems
through the use of random numbers.

We'll demonstrate by finding an approximation
to pi by using this method. Our illustration shows a
quarter-circle drawn within a square. The area of
the square is 100 X 100 square units, and the area
of the quarter-circle is (1+4) X pi X 100 x 100
square units. The ratio of the areas circle + square
is equal to pi + 4. Now drop a pin at random on the
square 1,000 times and count how many times the
pin falls within the quarter-circle; call this number
IN. The value of IN/1000 should be approximately
the same as the result of: circle + square —
i.e. pi + 4. So if we do the experiment, multiply IN
by four and divide by 1,000, then the result should
be an approximation to pi. That is precisely what
the following procedures do:

MAKE “IN 0
MC1 1000 100 100 ,
(PRINT [VALUE OF PI 1S] 0.004 * (:IN))

END. .

TO MC1 :NO :XNO :YNO
IF :NO=0 THEN STOP
RANDOM.POINT :XNO :YNO
IF INSIDE? THEN MAKE “IN :IN + 1
MC1 :NO — 1 :XNO :YNO

END

The procedure MC simply sets the conditions, calls
MC1 and prints the results. MC1 does most of the
work, calls RANDOM.POINT to position the turtle,
and then increments IN if the point is inside the
circle. This continues until the procedure has been
carried out the correct number of times.

TO RANDOM.POINT :XNO :YNO
SETXY RANDOM :XNO RANDOM :YNO

END

TOINSIDE? |
IF (XCOR * XCOR + YCOR * YCOR) < 10000

THEN OUTPUT “TRUE
OUTPUT “FALSE

END

RANDOM.POINT sets the turtle at a random position
within the square, while INSIDE? checks to see if the
turtle lies within the circle. It will take some time to
run this, but eventually a value for pi of 3.15999
will be obtained.

a

ee ye ne EE EEE ee

Lissajous curves are an interesting family of
curves in which the x co-ordinate of each point is
determined by the sine function and the y co-
ordinate by the cosine: |

Logo Exercises
1. Write a procedure to output the nth power of a
number, so POWER 4 2 would output 16.
2. Write a set of procedures to convert a decimal
number to hexadecimal (use a similar technique to
the binary example, but this time divide by 16).
3. Write a procedure EVEN? that will output TRUE it
a number is even and FALSE if itis not.
4 Use the Monte Carlo method to find the area
under the curve y=x° between x=0 and x=10.

THE HOME COMPUTER

LISSAJOUS FIGURES

ADVANCED COURSE 737

DESIGN

CODING

‘Seeemeene’inacomtter’ pen ones: Someeuennn = tememnency 9

TESTING

MAINTENANCE
Design Counts
Observing the rules of good
structure is difficult in machine
code programming.

Developing machine code
programs according to the rules
of good design is not difficult,
however, and pays extra
dividends in clarity of design
and debugging time saved

In the course So o far, we have ponccnanted
on looking at the 6809's instruction set and
seeing how a few of these instructions can be
put together to form simple routines.
However, writing larger, more ambitious
programs is a far more complex task. We
consider some techniques to give structure
to larger Assembly language programs.

We have talked a lot in the course about ae
benefits of proper program design, modular
construction and structured programming in the
context of high-level languages. The difficulties of
programming, and the benefits of good technique,
are greatly magnified at the lower level. In
Assembly language, there are usually no
convenient control structures, such as BASIC’S
WHILE... WEND and IF...THEN...ELSE, to
enforce at least some sort of structure on the code.
There are also no convenient notations, no data-
typing of variables, and, to make it worse, you can
expect an Assembly language program to be
between six and ten times the size of a high-level
program — in terms of the number of instructions.
Above all, it is far easier to make errors, and these
may have disastrous consequences — it is possible
to wipe out all the data on a disk with an error ina
single byte. To help make 6809 Assembly
language programming less daunting, we consider
here the most productive way to approach it.

Theres nothing particularly new about
structured programming or software engineering:
experienced programmers have always known
that forethought and clarity of approach were the
ground rules for a successful programming style.
What makes it seem new and original is the fact

_ that the world of microcomputing has been largely
amateur and hobbyist, but it is now becoming both
more professional and more appreciative of the
professional virtures. Nothing makes this point
more clearly or memorably than your first attempt
at debugging an undocumented, unstructured,
hand-assembled machine code program that you
created months ago and put aside. Good design
and working methods mean good programming.

STAGES IN PROGRAM DESIGN
@ Problem Specification: In this stage, the
Assembly language programmer must pay
particular attention to the specification of input
and output. Often peripheral devices are being
controlled directly — especially the keyboard and
screen — so the actual signals used must be
considered. There may be timing constraints as
well. You may not have any convenient routines

738 THE HOME COMPUTER ADVANCED COURSE

available that convert the string of bytes that come
in or go out into the form in which the program
reads the data — for example, converting a string
of ASCII characters into a decimal number in
binary form. It is important, therefore, to specify
not only the form in which the data arises but also
the form in which it is required by the rest of the
program.
e@ Program Design: We must now consider the
processes that will turn the program’s specified
input into its specified output. These should be
grouped where possible into logically self-
contained modules, along with the data that each
process requires. There are two main techniques
for ‘decomposing’ a program into modules:
bottom-up, where you collect a set of what would
appear to be useful modules in the context of the
program and then try to fit them together; and fop-
down, where the program is_ successively
decomposed into smaller and smaller units,
concentrating on the function of each unit rather
than how it is to be achieved, until the process
cannot usefully be continued. Only at that point
do you start considering how each module can be
assembled into code.

Bottom-up design has the great advantage of
using library modules, which are easy to put
together, and the end result is likely to be more
efficient in memory usage. The disadvantages are
that the program as a whole is likely to prove more
difficult to debug and test, and will not be so
comprehensible. ‘Top-down design leads to better
structured programs, and each stage in the process
can be tested separately by means of ‘stubs’, which
are short routines that take the place of as yet
unwritten modules by simply accepting input and
providing output in the correct form without doing
any processing. The disadvantages are that the
programs will tend to use more memory and the
routines developed are unlikely to have any
immediate use elsewhere. |

Within each module the data requirements,
data structures and algorithms must be specified.
A flowchart is useful at this level for representing
algorithms, but many people find it much easier to
work in a loose kind of high-level language called a
pseudo-code. PASCAL is usually used as the basis
for this pseudo-code, but there is no reason why
BASIC cannot be used. This enables us to design
algorithms and data in a way that is familiar to us,
and confines the lower-level work to the relatively
simple task of translating the algorithm from
pseudo-code into Assembly language. This is

-much easier than trying to design and code in
Assembly language at the same time.

@ Coding: If the routines have been well designed

| |

i

then this stage will probably be the easiest and least
time-consuming of all. In order to translate from a
high-level algorithm to low-level code it is
essential that the control structures used at high
level are carried over to the low level, avoiding the
temptation to use BRA and JMP indiscriminately.
Remember that any time you save by writing
unstructured code is certain to be ‘clawed back’ in
a frustrating trial-and-error debugging stage. In
the diagram we give some examples of the way in
which the common control structures can be
coded — assuming, for simplicity, that the data
items used are eight-bit.

One problem with coding with control
structures in this way is that the program is longer
than it might be. Where space is not limited then
there is no point in trying to save it; short code does
not usually mean shorter running times but it does
mean longer development and debugging times.
Where space is limited, then it is better to write ina
spacious structured way, and introduce a further
stage of optimisation where the working code can
be shortened to take into account particular
circumstances, retaining as far as possible the
essential structure.
® Debugging: At this stage, each module is
separately tested — using stubs where necessary —
to make sure it gives appropriate outputs for valid
inputs. Debugging Assembly language programs
differs considerably from BASIC program
debugging. To be able to see what is happening, it
is necessary to be able to inspect the contents of the
registers and the memory locations used by the
program, and to change them if necessary. It is
nearly impossible to debug an Assembly program
without the use of a utility for setting and removing
breakpoints. These enable you to run the program
up to the next breakpoint, then dump the registers,
and inspect and change memory contents.
® Testing: Once each module has been tested and
debugged then the entire program has to be put
together and tested with appropriate data. ‘This is
much easier when you know that all the
component parts are working properly.
® Documentation: Assembly language programs
are more difficult to understand than high-level
programs, so documentation is even more
important. In particular, it is vital to document the
use of memory, the use of the stack (especially
while passing parameters), and the register usage
within subroutines.
® Maintenance: If a program is to be used over a
period of time then at some point it will probably
need revision — either to remove any bugs that
appear or to make improvements. It is at this stage
that time spent in careful design and
documentation really pays off. If the program is
badly designed and/or poorly documented then
you are better off doing a complete rewrite rather
than attempting to make alterations.

Now we need a project to apply these design
skills to: for our first venture in structured
Assembly language programming nothing could
be more appropriate than a machine code

monitor/debugger. If you’ve used an assembler
before, then you may be familiar with the kind of
utilities to expect from a monitor/debugger.
Essentially, it gives the machine code programmer
the kind of editing facilities that the BAsIc
programmer takes for granted — namely, the
ability to inspect and change the contents of
memory. |

In the next instalment of the course we will take
this project through the design and development
stages described in this article, to create an
important and extremely useful programming aid.

Basic Backbone
There are no control structures

written into Assembly language,
so it pays to import tried and -
tested methods from high-level
languages. The structures
shown here are clear and
graceful in both high- and low-

level languages, and should be
uséd to the exclusion of all

~ alternatives ;

THE HOME COMPUTER ADVANCED COURSE 739

IAN McKINNELL

The Game Progresses
Deus Ex Machina can be either
played or viewed as an
entertainment. There is a wide
variety of screens in the game,
although some do bear a
resemblance to others. The
tactics required to maintain the
‘ideal entity’ are changed
constantly. The score is shown
as a percentage in the bottom

right-hand corner and slowly
falls as the game — and the

defect’s life — progresses

THE DEFECT EFFECT -

Aut
offer ‘a completely new form of computer
entertainment’. Combining elements of
well-known arcade games with an audio
soundtrack featuring showbusiness stars,
this complex program allows you to take the
leading role in a ‘fully animated televised
fantasy’

As computer games have developed into a major
part of the leisure industry, it was perhaps
inevitable that software houses would join forces
with other segments of the entertainment
business. Automata Software, best known for its
series of games featuring the Piman, has taken the
first steps in this direction by developing a product
that contains not only computer software but also
an audio cassette that can be synchronised with the
computer program to provide a soundtrack to the

game. This soundtrack features well-known
figures like Jon Pertwee and Frankie Howerd.

The idea behind Deus Ex Machina, which took
‘six months to develop and three months to
program, is that an all-powerful computer of the
future rebels and assists in the creation of a human
‘defect’. The player, as the defect, passes through
various stages in the game that depict experiences
from childhood to old age. The player’s

- involvement begins at conception by guiding the
sperm towards the egg. As the child grows, it is
under constant attack by the “defect police’. Itis up
to the player to deflect these attacks, using either
the keyboard or the joystick. Scoring is achieved
by maintaining the ‘ideal entity percentage’, which
begins at 99 per cent and drops under the assaults
of the defect police. As the defect grows to
adulthood, the nature of these attacks changes and
the player must adapt to meet them.

740 THE HOME COMPUTER ADVANCED COURSE

Once the game is loaded, the audio soundtrack
should be synchronised with the program. Care
must be taken when this is done, as the various
screens are timed to coincide precisely with the
words and music, and this adds greatly to the
enjoyment of the package. |

The program is divided into two segments, one
half on each side of the cassette, making up a total
of 96 Kbytes of code. At the end of side one, after
an amorous scene in which the player must move a
cursor around the body to meet the kisses drifting
towards it, the second side must be loaded. ‘The
computer should not be switched off, and again
care must be taken to synchronise the soundtrack
correctly. Player involvement in the second half
consists mainly in jumping over obstacles before
reaching ‘old age’. At this point, large blocd clots
appear onscreen, which must be broken up by the
player. At the end of the game, no matter what the
score, the defect dies.

Deus Ex Machina is unusual in that there is no
- winning score, and in fact the player need not even
participate in the game at all. Events will unfold in
the same way without any participation, so you
have the choice of becoming involved in the game
or sitting back and watching it as a piece of
entertainment. The graphics are uniformly
excellent and imaginative. Although none of the
screens is breathtaking, they do reflect the care and
attention to detail devoted to the whole package.

The soundtrack music was written and
performed entirely by Automata’s co-founder Mel
Croucher, who also wrote the story. The songs
themselves are pleasant but not exceptional. The
best number accompanies the scene in which the
defect comes to life, and is sung by Ian Dury.

The, story and soundtrack are quite different
from most computer games and reflect the non-
violent philosophy behind all Automata’s
computer games. Games enthusiasts who enjoy
destroying fast-moving barrages of attacking
aliens would probably be disappointed, and many
people may find the semi-mystical content of the
lyrics irritating. However, Automata should be
heartily applauded for their innovative idea. The
program is a bold experiment and will no doubt be
considered an important step in the development
of computerised entertainment.

¥ 4

*

i
§ {

f

i
i

%

¥
tt

«gespac a aa anc A RA SEE EEG DSTATDIDAUB — ee

DATABASE
Here, courtesy of Zilog Inc., we produce another part of the Z80 programmers’ reference card.

16-Bit Arithmetic Group

SOURCE

DESTINATION

cn N.C :

Symbolic Flags GO) oforelel=) No.of No.of M No.of T

Mnemonic Operation mo H PIV N C 76 543 210 Hex Bytes Cycies States Comments

POD HL ss ea. a ce — lr ses—sSSsC i D0 Ss) Ou : S ce SS eg

Oo BO.

ROC al ss HL — HL+s5s4+CyY } f kK KF Ke YhUhUmUmLUCU Fe ED : 4 ce bbe

O11 ssi O10 .

ee

oo FL oss ao et os OY | a © eOKLULDCLUCUC ! 1 Oo ED 2 4 ls

OS) sso 66 :

ADD IX, pp A 6S > =| FF FF F thmhmUmUl 1 DD 4 Le pp Reg.

O pp) oO) Do Be
Oi oe

: ix

7 Se

ADD IY, tr oe — = - . . .lhrLLhLC .. Po 8 4 15 1 eG

. OO BL
6 es

10 OU
to Be

Ne Ss So. ss *_ ©*§ § © © © © ee soo 6 : 1 6

ie ys Ll * ©* «§ = © hs oe DD 2 . 10

00 100 011 23

INC LY ly — |1¥ + 1 ~— .- - . 2... 1 FD & 2 10

OO 0D ce

Bae SS ss — ss-] — .- 5 Oe ss) 6 : : 6

Deo x IX — X-1 -— . - 7 DO. 2 10

O00 60) Ot 26

DEC Ty — — = - . fs lhl; .. FD eC . 10

N@ees So sce) 6) ge se ess se Be gk oe
ee 6 6 fac cei sel 6 Ba 8 oe

ris any of the regisie’ pas BU DE LY SP

ie cle Nec ee e

i

flag 9Ci aliecied © = [ag ese! = = jag sel *% — [a0 5 Unknow)
Wee > 2 cele seers ae © = 25 1 8) ge cen ee ey

